Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(2): 258-270, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079221

RESUMO

Oxidants participate in lymphocyte activation and function. We previously demonstrated that eliminating the activity of NADPH oxidase 2 (NOX2) significantly impaired the effectiveness of autoreactive CD8+ CTLs. However, the molecular mechanisms impacting CD8+ T cell function remain unknown. In the present study, we examined the role of NOX2 in both NOD mouse and human CD8+ T cell function. Genetic ablation or chemical inhibition of NOX2 in CD8+ T cells significantly suppressed activation-induced expression of the transcription factor T-bet, the master transcription factor of the Tc1 cell lineage, and T-bet target effector genes such as IFN-γ and granzyme B. Inhibition of NOX2 in both human and mouse CD8+ T cells prevented target cell lysis. We identified that superoxide generated by NOX2 must be converted into hydrogen peroxide to transduce the redox signal in CD8+ T cells. Furthermore, we show that NOX2-generated oxidants deactivate the tumor suppressor complex leading to activation of RheB and subsequently mTOR complex 1. These results indicate that NOX2 plays a nonredundant role in TCR-mediated CD8+ T cell effector function.


Assuntos
Linfócitos T CD8-Positivos , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Granzimas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos NOD , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Masculino , Feminino , Adulto Jovem
2.
Am J Transplant ; 23(4): 498-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731781

RESUMO

The loss of functional ß-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.


Assuntos
Antioxidantes , Transplante das Ilhotas Pancreáticas , Animais , Camundongos , Abatacepte , Camundongos Endogâmicos NOD , Linfócitos T Citotóxicos , Camundongos Endogâmicos C57BL , Transplante das Ilhotas Pancreáticas/métodos , Antígeno CTLA-4 , Sobrevivência de Enxerto , Macrófagos , Aloenxertos , Imunoglobulina G , Camundongos Endogâmicos BALB C
3.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36512407

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic ß cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Masculino , Feminino , Camundongos , Animais , Helicase IFIH1 Induzida por Interferon , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Macrófagos/metabolismo
4.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497105

RESUMO

Type 1 diabetes is a polygenic disease that results in an autoimmune response directed against insulin-producing beta cells. PTPN2 is a known high-risk type 1 diabetes associated gene expressed in both immune- and pancreatic beta cells, but how genes affect the development of autoimmune diabetes is largely unknown. We employed CRISPR/Cas9 technology to generate a functional knockout of PTPN2 in human pluripotent stem cells (hPSC) followed by differentiating stem-cell-derived beta-like cells (sBC) and detailed phenotypical analyses. The differentiation efficiency of PTPN2 knockout (PTPN2 KO) sBC is comparable to wild-type (WT) control sBC. Global transcriptomics and protein assays revealed the increased expression of HLA Class I molecules in PTPN2 KO sBC at a steady state and upon exposure to proinflammatory culture conditions, indicating a potential for the increased immune recognition of human beta cells upon differential PTPN2 expression. sBC co-culture with autoreactive preproinsulin-reactive T cell transductants confirmed increased immune stimulations by PTPN2 KO sBC compared to WT sBC. Taken together, our results suggest that the dysregulation of PTPN2 expression in human beta cell may prime autoimmune T cell reactivity and thereby contribute to the development of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Diabetes Mellitus Tipo 1/genética , Linfócitos T , Diferenciação Celular , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
5.
Diabetes ; 71(12): 2793-2803, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041196

RESUMO

Hybrid insulin peptides (HIPs) form in pancreatic ß-cells through the formation of peptide bonds between proinsulin fragments and other peptides. HIPs have been identified in pancreatic islets by mass spectrometry and are targeted by CD4 T cells in patients with type 1 diabetes (T1D) as well as by pathogenic CD4 T-cell clones in nonobese diabetic (NOD) mice. The mechanism of HIP formation is currently poorly understood; however, it is well established that proteases can drive the formation of new peptide bonds in a side reaction during peptide bond hydrolysis. Here, we used a proteomic strategy on enriched insulin granules and identified cathepsin D (CatD) as the primary protease driving the specific formation of HIPs targeted by disease-relevant CD4 T cells in T1D. We also established that NOD islets deficient in cathepsin L (CatL), another protease implicated in the formation of disease-relevant HIPs, contain elevated levels of HIPs, indicating a role for CatL in the proteolytic degradation of HIPs. In summary, our data suggest that CatD may be a therapeutic target in efforts to prevent or slow the autoimmune destruction of ß-cells mediated by HIP-reactive CD4 T cells in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Insulina , Catepsina D , Proteômica , Camundongos Endogâmicos NOD , Peptídeos , Linfócitos T CD4-Positivos , Insulina Regular Humana
6.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015736

RESUMO

Type 1 diabetes is an autoimmune disease characterized by insulin-producing ß cell destruction. Although islet transplantation restores euglycemia and improves patient outcomes, an ideal transplant site remains elusive. Brown adipose tissue (BAT) has a highly vascularized and antiinflammatory microenvironment. Because these tissue features can promote islet graft survival, we hypothesized that islets transplanted into BAT will maintain islet graft and BAT function while delaying immune-mediated rejection. We transplanted syngeneic and allogeneic islets into BAT or under the kidney capsule of streptozotocin-induced diabetic NOD.Rag and NOD mice to investigate islet graft function, BAT function, metabolism, and immune-mediated rejection. Islet grafts within BAT restored euglycemia similarly to kidney capsule controls. Islets transplanted in BAT maintained expression of islet hormones and transcription factors and were vascularized. Compared with those in kidney capsule and euglycemic mock-surgery controls, no differences in glucose or insulin tolerance, thermogenic regulation, or energy expenditure were observed with islet grafts in BAT. Immune profiling of BAT revealed enriched antiinflammatory macrophages and T cells. Compared with the kidney capsule control, there were significant delays in autoimmune and allograft rejection of islets transplanted in BAT, possibly due to increased antiinflammatory immune populations. Our data support BAT as an alternative islet transplant site that may improve graft survival.


Assuntos
Tecido Adiposo Marrom/cirurgia , Diabetes Mellitus Tipo 1/cirurgia , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Proteínas de Homeodomínio/genética , Transplante das Ilhotas Pancreáticas/métodos , Transativadores/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Diferenciação Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Sobrevivência de Enxerto , Proteínas de Homeodomínio/biossíntese , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , RNA/genética , Transativadores/biossíntese , Transplante Homólogo
7.
Xenotransplantation ; 28(6): e12706, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245064

RESUMO

BACKGROUND: Islet transplantation with neonatal porcine islets (NPIs) is a promising treatment for type 1 diabetes (T1D), but immune rejection poses a major hurdle for clinical use. Innate immune-derived reactive oxygen species (ROS) synthesis can facilitate islet xenograft destruction and enhance adaptive immune responses. METHODS: To suppress ROS-mediated xenograft destruction, we utilized nanothin encapsulation materials composed of multilayers of tannic acid (TA), an antioxidant, and a neutral polymer, poly(N-vinylpyrrolidone) (PVPON). We hypothesized that (PVPON/TA)-encapsulated NPIs will maintain euglycemia and dampen proinflammatory innate immune responses following xenotransplantation. RESULTS: (PVPON/TA)-encapsulated NPIs were viable and glucose-responsive similar to non-encapsulated NPIs. Transplantation of (PVPON/TA)-encapsulated NPIs into hyperglycemic C57BL/6.Rag or NOD.Rag mice restored euglycemia, exhibited glucose tolerance, and maintained islet-specific transcription factor levels similar to non-encapsulated NPIs. Gene expression analysis of (PVPON/TA)-encapsulated grafts post-transplantation displayed reduced proinflammatory Ccl5, Cxcl10, Tnf, and Stat1 while enhancing alternatively activated macrophage Retnla, Arg1, and Stat6 mRNA accumulation compared with controls. Flow cytometry analysis demonstrated significantly reduced innate immune infiltration, MHC-II, co-stimulatory molecule, and TNF expression with concomitant increases in arginase-1+ macrophages and dendritic cells. Similar alterations in immune responses were observed following xenotransplantation into immunocompetent NOD mice. CONCLUSION: Our data suggest that (PVPON/TA) encapsulation of NPIs is an effective strategy to decrease inflammatory innate immune signals involved in NPI xenograft responses through STAT1/6 modulation without compromising islet function.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Suínos , Taninos , Transplante Heterólogo
8.
Diabetes ; 69(9): 1948-1960, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586979

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease of insulin-producing ß-cells. Islet transplantation is a promising treatment for T1D, but long-term graft viability and function remain challenging. Oxidative stress plays a key role in the activation of alloreactive and autoreactive immunity toward the engrafted islets. Therefore, targeting these pathways by encapsulating islets with an antioxidant may delay immune-mediated rejection. Utilizing a layer-by-layer approach, we generated nanothin encapsulation materials containing tannic acid (TA), a polyphenolic compound with redox scavenging and anti-inflammatory effects, and poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer. We hypothesize that transplantation of PVPON/TA-encapsulated allogeneic C57BL/6 islets into diabetic NOD mice will prolong graft function and elicit localized immunosuppression. In the absence of systemic immunosuppression, diabetic recipients containing PVPON/TA-encapsulated islets maintained euglycemia and delayed graft rejection significantly longer than those receiving nonencapsulated islets. Transplantation of PVPON/TA-encapsulated islets was immunomodulatory because gene expression and flow cytometric analysis revealed significantly decreased immune cell infiltration, synthesis of reactive oxygen species, inflammatory chemokines, cytokines, CD8 T-cell effector responses, and concomitant increases in alternatively activated M2 macrophage and dendritic cell phenotypes. Our results provide evidence that reducing oxidative stress following allotransplantation of PVPON/TA-encapsulated islets can elicit localized immunosuppression and potentially delay graft destruction in future human islet transplantation studies.


Assuntos
Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Transplante das Ilhotas Pancreáticas/métodos , Taninos/uso terapêutico , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Rejeição de Enxerto/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Espécies Reativas de Oxigênio/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-29740396

RESUMO

Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic ß-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term ß-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.

10.
Biomaterials ; 128: 19-32, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28285194

RESUMO

Type 1 Diabetes (T1D) is a chronic pro-inflammatory autoimmune disease consisting of islet-infiltrating leukocytes involved in pancreatic ß-cell lysis. One promising treatment for T1D is islet transplantation; however, clinical application is constrained due to limited islet availability, adverse effects of immunosuppressants, and declining graft survival. Islet encapsulation may provide an immunoprotective barrier to preserve islet function and prevent immune-mediated rejection after transplantation. We previously demonstrated that a novel cytoprotective nanothin multilayer coating for islet encapsulation consisting of tannic acid (TA), an immunomodulatory antioxidant, and poly(N-vinylpyrrolidone) (PVPON), was efficacious in dampening in vitro immune responses involved in transplant rejection and preserving in vitro islet function. However, the ability of (PVPON/TA) to maintain islet function in vivo and reverse diabetes has not been tested. Recent evidence has demonstrated that modulation of redox status can affect pro-inflammatory immune responses. Therefore, we hypothesized that transplanted (PVPON/TA)-encapsulated islets can restore euglycemia to diabetic mice and provide an immunoprotective barrier. Our results demonstrate that (PVPON/TA) nanothin coatings can significantly decrease in vitro chemokine synthesis and diabetogenic T cell migration. Importantly, (PVPON/TA)-encapsulated islets restored euglycemia after transplantation into diabetic mice. Our results demonstrate that (PVPON/TA)-encapsulated islets may suppress immune responses and enhance islet allograft acceptance in patients with T1D.


Assuntos
Quimiocinas/biossíntese , Materiais Revestidos Biocompatíveis/farmacologia , Mediadores da Inflamação/metabolismo , Ilhotas Pancreáticas/fisiologia , Polifenóis/farmacologia , Linfócitos T/citologia , Animais , Antígeno B7-2/metabolismo , Biomarcadores/metabolismo , Quimiotaxia/efeitos dos fármacos , Técnicas de Cocultura , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Radicais Livres/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Poli I-C/farmacologia , Pirrolidinonas/síntese química , Pirrolidinonas/química , Baço/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...